Abaena variabilis in a hollow fibre photobioreactor. Enzyme Microb. Biotechnol. 17:306?10. Masepohl

Aus KletterWiki
Wechseln zu: Navigation, Suche

176:5583?586. Mazur-Marzec, H., and M. Plinski. 2009. Do toxic cyanobacteria pose a threat to the Baltic ecosystem? Oceanologia 51:293?13. Meeks, J. C., and J. Elhai. 2002. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol. Mol. Biol. Rev. 66:94?21. Melis, A., and T. Happe. 2001. Hydrogen production. Green algae as a supply of energy. Plant Physiol. 127:740?48. Meyer, J. 2007. [FeFe] hydrogenases and their evolution: a genomic viewpoint. Cell Mol. Life Sci. 64:1063?084. Mikheeva, L. E., O. Schmitz, S. V. Shestakov, and H. Bothe. 1995. Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities. Z. Naturforsch 50c:505?10. Mulkidjanian, A. Y., E. V. Koonin, K. S. Makarova, S. L. Mekhedov, A. Sorokin, Y. I. Wolf, A. Ween 0.55 and 0.77, while in the two randomized sets it ranges in Dufresne., F. Partensky, H. Burd, D. Kaznadzey, R. Haselkorn, and M. Galperin. 2006. The cyanobacterial genome core plus the origin of photosynthesis. Proc. Natl. Acad. Sci. U. S. A. 103:13126?13131. Mullineaux, C. W., V. Mariscal, A. Nenninger, H. Khanum, A. Herrero, E. Flores, and D. G. Adams. 2008. Mechanisms of intercellular molecule exchange in heterocyst-forming cyanobaceria. EMBO J. 27:1299?308. Nakamura, Y., J. Takahashi, A. Sakurai, Y. Inaba, E. Suzuki, S. Nihei, S. Fujiwara, M. Tsuzuki, H. Myashita, H. Ikemoto, M. Kawachi, H. Sekiguchi, and N. Kurano. 2005. Some cyanobacteria synthesize semi-amylopectin form a-polyglucans rather than glycogen. Plant Cell Physiol. 46:539?46. title= journal.pcbi.0010057 Neuer, G., and H. Bothe. 1982. The pyruvate:ferredoxin oxidoreductase in heterocyts on the cyanobacterium Anabaena cylindrica. Biochim. Biophys. Acta 716:358?65. Neunuebel, M. R., and J. W. Golden. 2008. The Anabaena sp. strain 7120 gene all2874 encodes a diguanylate cyclase and is essential for regular heterocyst improvement under high-light development conditions. J. Bacteriol. 190:6829?838. Newton, W. E. 2007. Physiology, biochemistry and molecular biology of nitrogen fixation, p. 109?29. In H. Bothe, S. J. Ferguson, and W. E. Newton (ed.), Biology from the nitrogen cycle. Elsevier, title= genetics.115.182410 Amsterdam, Netherlands. Ni, C. V., A. F. title= bcr-2013-202552 Yakuninin, and I. N. Gogotov. 1990.Abaena variabilis within a hollow fibre photobioreactor. Enzyme Microb. Biotechnol. 17:306?10. Masepohl, B., K. Scholisch, K. Gorlitz, C. Kiutski, and H. Bohme. 1997. ???The heterocyst-specific fdxH gene solution in the cyanobacterium Anabaena sp. PCC 7120 is important but not important for nitrogen fixation. Mol. Gen. Genet. 253:770?76. Masukawa, H., M. Mochimaru, and H. Sakurai. 2002. Disruption in the uptake hydrogenase gene, but not in the bidirectional hydrogenase gene, results in enhanced photobiological hydrogen production by the nitrogenfixing cyanobacterium Anabaena sp. PCC 7120. Appl. Microbiol. Biotechnol. 58:618?24. Masukawa, H., M. Mochimaru, and H. Sakurai. 2002. The hydrogenases and photobiological hydrogen production using nitrogenase technique in cyanobacteria. Int. J. Hydrogen Energy 27:1471?474. Masukawa, H., X. Zhang, E. Yamazaki, S. Iwata, K. Nakamura, M. Mochimaru, K. Inoue, and H. Sakurai. 2009. Survey in the distribution of diverse types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria. Mar. Biotechnol. 11:397?09. Maynard, R. H., R. Premakur, and P. E. Bishop. 1994. Mo-independent nitrogenase three is advantageous for diazotrophic growth of Azotobacter vinelandii on strong medium containing molydenum.